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Abstract—We propose a unified framework for isolating, com-
paring and differentiating objects within an image. We rely
on the recently proposed total-variation transform, yielding a
continuous, multi-scale, fully edge-preserving, local descriptor,
referred to as spectral total-variation local scale signatures.
We show and analyze several useful merits of this framework.
Signatures are sensitive to size, local contrast and composition of
structures; are invariant to translation, rotation, flip and linear
illumination changes; and texture signatures are robust to the
underlying structures. We prove exact conditions in the 1D case.

We propose several applications for this framework: saliency
map extraction for fusion of thermal and optical images or for
medical imaging, clustering of vein-like features and size-based
image manipulation.

Index Terms—Spectral Total-Variation, Image Fusion, Image
Segmentation, Edge Detection, Size Differentiation, Clustering,
Saliency, Thermal Imagery, Medical Imagery.

I. INTRODUCTION

D IFFERENTIATING objects within an image by contrast,
size or structure is a fundamental image processing task.

It is highly useful for various image modalities and applica-
tions, such as image clustering, enhancement and fusion. A key
feature in many modalities (natural images, medical, thermal,
depth etc.) are edges, or discontinuities in the data.

For this purpose, the spectral total variation transform
(spectral TV) has been recently introduced as a useful
edge-preserving, multi-scale decomposition tool [1],[2],[3],[4].
Some previous spectral TV-based approaches succeeded in tex-
ture extraction and manipulation [1],[2] or texture-structure de-
composition [3],[5], while other TV or spectral TV-based ap-
proaches successfully differentiated objects by size [4],[6],[7].
However, no previous approach is suited for the task of object
differentiation by both size and contrast (Fig. 3). Applying
the transform to different modalities is also challenging, due
to their complex nature, multi-scaled and occluded content.

In this paper, we present a novel, unified framework for
object differentiation by contrast, size or structure, including
complex multi-scaled objects. We capture salient objects by
exploiting the comprehensive scale and location information
extracted from spectral TV, referred to as Spectral TV Local
Scale Signatures (Fig. 1). Stemming from an edge preserving,
sparse spectral transform, signatures of significant objects are
sparse and strong; their locality allows good differentiation
within an image. We show and analyze the essential proper-
ties of the signatures: sensitivity to size, local contrast and
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Figure 1: Spectral TV Local Scale Signatures, φ(x, y, t):
a multi-scale spectral TV per-pixel description, sensitive to
size, local contrast and composition of structures, invariant to
translation, rotation, flip and linear illumination change, with
texture invariance to underlying structure. Pixels with common
features (strawberry seeds) have similar signatures; different
pixels can be differentiated by their distinct signatures.

composition of structures; invariance to rotation, translation,
flip and linear illumination change; and invariance of texture
to structure. We show how no previous spectral TV-based
approach can handle object differentiation by size and contrast,
as well as a composition of structures (Fig. 3).
Though relying merely on a few simple cornerstones, our
algorithm is applicable to various tasks (Fig. 2): fusion of
thermal and visible images, or of medical images of different
modalities; clustering of vein-like repetitive structures (seg-
mentation / edge detection); and size differentiation.
The rest of the paper is organized as follows. Sec. II briefly
surveys previous image descriptors. Sec. III introduces spec-
tral TV (Sec. III-A), and reviews and analyzes previous
approaches. Sec. IV presents the novel concept of spectral
TV signatures and their properties. Sec. V gives a theoretical
analysis. Sec. VI presents a unified framework for object
differentiation, demonstrated for synthetic images, and applied
for image manipulation (VI-C) and fusion (VI-D). Sec. VII
gives experimental results and comparisons to other methods.
Sec. VIII concludes our work. The Appendix provides further
analysis and suggests new fusion visualization methods.

II. RELATED WORK

In the past decades, high-level image understanding and
processing has considerably relied on feature descriptors of
different types. For example, sparse descriptors, describing
characteristics of interest points only (e.g. corners) [8], [9].
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(a) Thermal input
image

(b) Corresponding
visible image

(c) Repetitive input
image

(d) Map of salient
structures
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image

(f) Size
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(g) Thermal
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fusion

(i) Image
manipulation

(j) Image
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(k) Size
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Figure 2: Image fusion (a-b,g-h) and image manipulation (c-f,i-l) using spectral TV local scale signatures.

(a) Four circles
of different
radius r and
contrast h

(b) Our method:
spectral TV

signature
clustering

(c) Global L2-fidelity approach:
object differentiation by global

filtering using eigenvalues
λ ∝ 1/rh

(d) Global L1-fidelity
approach [4]: object

differentiation by global filtering
using eigenvalues λ ∝ 1/r

(e) Local dominant scale
approach (based on [3]): object

differentiation by time of peak of
local response

(f) Two
composited
(overlayed)

circles

(g) Our method:
spectral TV

signature
clustering

(h) Global L2-fidelity approach:
object differentiation by global

filtering using eigenvalues
λ ∝ 1/rh

(i) Global L1-fidelity
approach [4]: object

differentiation by global filtering
using eigenvalues λ ∝ 1/r

(j) Local dominant scale
approach (based on [3]): object

differentiation by time of peak of
local response

Figure 3: Top row: no spectral-TV based method but ours (b) can differentiate objects by both size and contrast. Global
filtering (c,d): different objects have the same eigenvalue (inversely proportional to scale); they thus respond simultaneously in
a spectrum single peak, and cannot be differentiated. Local dominant scale (e): pixels of different objects have similar dominant
scales, and thus cannot be differentiated. Bottom row: our method can also differentiate composited (overlayed) structures.

Our focus here, however, is on dense descriptors, describ-
ing every image pixel using properties of the pixel and its
surroundings. Various algorithms [6], [10], [11], [12] rely on
fundamental properties, such as intensity and color, gradient
magnitude and orientation, textures and patterns. Some of
these algorithms use features for learning [13], [14]. Among
these descriptors, those based on histograms of patterns [15]
or of oriented gradients [16] are rotation-variant, thus suitable
for texture applications. Other approaches include multi-scale
decompositions using image transforms [17] or diffusion [18];
or using the responses to a set of predefined linear filters
as features [19], [20], [21]. Recently, convolutional neural
networks (CNN) have emerged as a highly successful data-
driven tool [22], [23], [24]. However, this feature learning
approach is not generic and lacks solid theoretical background.
To overcome this, recent CNN methods use sets of linear filters
in their first convolutional layers [25], [26].

In this paper, we present a novel dense, multi-scale, edge
preserving, local descriptor. Its properties are highly suited for

detecting and clustering vein- and disk-like structures and for
constructing saliency maps for fusion.

III. PRELIMINARIES

A. Spectral Total Variation
The total variation (TV) functional [27] has been widely

used as an image regularizer, e.g. for denoising and decon-
volution [27], [28], [29], [30], decomposition and texture
analysis [31], [32], [33] and fusion [34], [35]. Denoting the
image domain as Ω, and the gradient (understood as the
distributional gradient) as ∇, the TV functional is defined as:

J(u) =

∫
Ω

|∇u(x)|dx. (1)

For an input image f(x), the gradient descent evolution of this
functional, known as TV flow [36], is defined as:

∂u

∂t
= div

(
∇u
|∇u|

)
in (0,∞)× Ω,

u(x, 0) = f(x) in x ∈ Ω,

(2)



1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2872630, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, FEBRUARY 2018 3

with Neumann boundary conditions (note that the right-hand-
side of (2) should be understood as a negative subgradient of
J(u)). Performing TV flow, up to a scale T , is analogous to
solving the ROF [27] optimization problem [1]:

arg min
u

{
J(u) +

1

2T
‖f − u‖22

}
. (3)

Denoting t ∈ [0,∞) as the time or scale parameter of the TV
flow (2), and utt as the second time derivative of its solution
u(x, t), the spectral TV transform [37] is defined by:

φ(x, t) = utt(x, t)t. (4)

We refer to φ(x, t) as the spectral component or band at scale
t (see Fig. 1, left for a visualization of φ at some scales). The
main properties of this nonlinear transform are as follows:

1) Reconstruction. Any zero mean, bounded varia-
tion function f can be reconstructed by f(x) =∫∞

0
φ(x, t)dt.

2) Spectral representation. We define a nonlinear eigen-
function with respect to the subdifferential of TV, ∂J(u),
as: λu ∈ ∂J(u). Examples of such eigenfunctions are
disks, or convex sets with low curvature on the boundary,
bounded by the perimeter to area ratio [36]. Then the
spectral response of an eigenfunction f with eigenvalue
λ is a Dirac delta at scale 1/λ: φ(t) = δ(t − 1/λ)f .
Thus, a signal composed of spatially-separated eigen-
functions has a highly sparse representation (analogous
to Fourier transform representation of sine functions).

3) Orthogonality. Under some conditions, such as in the
discrete 1D case, spectral components are orthogonal to
each other: 〈φ(t1), φ(t2)〉 = 0, ∀t1 6= t2 [1].

4) Filtering. Given a filter H(t), extending the reconstruc-
tion formula, fH(x) =

∫∞
0
H(t)φ(x, t)dt, allows the

design of various edge-preserving TV filters.
5) Translation and rotation invariance. The φ compo-

nents inherit the properties of the TV functional and are
translation and rotation invariant.

These properties apply to the multiscale representation φ(x0, t)
of each pixel x0. This pixel-neighborhood relation character-
ization can successfully serve as a generic pixel descriptor.

We later use two additional definitions. First, the spectrum
Sf (t) is defined (using the original definition of [37]) as:

Sf (t) = ‖φ(x, t)‖L1 =

∫
Ω

|φ(x, t)|dx, (5)

which can be seen as the L1 amplitude of the response at each
scale t ∈ [0,∞). Second, the residual image fr(x), generated
after some finite time T , is defined as:

fr(x, T ) = u(x, T )− ut(x, T ) · T. (6)

Further discussions can be found in [37].

B. Previous Spectral TV-based Approaches

Most previous spectral TV-based methods perform global
scale analysis, that is, spatially integrating spectral information
for each scale. Global spectral methods using the TV-flow (or
L2-fidelity as in (3)) have been successfully used for texture

extraction and manipulation [1], [2], [5]. However, differentiat-
ing objects within an image is challenging, as different objects
may correspond similarly in the global spectrum (5) (although
the full signature is different).
Another successful global approach uses an L1-fidelity term
in (3) for contrast-invariant multi-scale decomposition, dif-
ferentiating objects only by their size [4]. However, we are
interested in differentiating objects both by size and contrast.
The only previous local approach uses local dominant scale
analysis for structure-texture decomposition [3]. It relies on
the time of the response peak of each pixel to fit a separation
surface between two spectral bands: texture and structure.
Despite its success for texture-structure decomposition, it is
not suited for object differentiation. Despite its simplicity, it
is limited, as it uses only the response peak information.

Toy Example Analysis: Fig. 3 studies the limitations of
previous spectral TV-based methods.
Objects of various sizes and contrasts (Fig. 3a) cannot all be
differentiated. In the global L2-fidelity method, two objects,
one double the size, but half the contrast of the other, have
the same eigenvalue λ ∝ 1/rh, inversely proportional to
scale. Thus, both respond simultaneously, forming a mutual
peak (Fig. 3c) in the global spectrum (5). The global L1-
fidelity method [4] cannot differentiate same-size, different-
contrast objects, which have the same eigenvalue λ ∝ 1/r.
Thus, these objects present same-scale, simultaneous spectrum
responses (Fig. 3d). Differentiating using the local (pixel-wise)
dominant scale (following [3]) also fails, as different objects
and background regions respond simultaneously (Fig. 3e).
A composition of structures (Fig. 3f) simulates real multi-
scaled images. Composited objects impact each other’s be-
havior, first merging, then fading. Both global methods can
approximately differentiate objects (Figs. 3h, 3i). However,
differentiating by local dominant scale fails (Fig. 3j).
In conclusion, no previous spectral-TV based method can dif-
ferentiate objects by size and contrast, as well as a composition
of structures. Only our method succeeds in this task (Figs. 3b,
3g), by exploiting more spectral TV information within a local
framework.

IV. SPECTRAL TV LOCAL SCALE SIGNATURES

Object differentiation requires exploiting detailed, local,
multi-scale information to handle different sizes, contrasts and
complex structures. We thus introduce the concept of spectral
TV local scale signatures. We denote the signatures of a
signal f(x) as φf (x, t), where φ is defined by (4). For each
pixel there exists a well-defined, unique representation in the
scale continuum (unlike classical pyramidal multiscale repre-
sentations and wavelets), yielding a natural multi-scale pixel
descriptor. This section introduces the properties of signatures
and their implications for general images, including visual
demonstrations. The interested reader can find an elaborated
theoretical analysis in Sec. V.

A. Properties of Spectral TV Signatures

We now summarize the main properties of spectral TV sig-
natures and illustrate them graphically by simple toy examples.



1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2872630, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, FEBRUARY 2018 4

f
(x

)
φ

(x
,t

)

(a)
Property 1:

Sensitivity to Size
and Local Contrast

(b) Property 2:
Sensitivity to

Composition of
Structures

(c) Property 3:
Rotation and
Translation
Invariance

Figure 4: 2D Demonstration of properties 1, 2, 3. Signatures
are distinct due to their sensitivity to size and contrast (a), and
their sensitivity to composition of structures (b). However, they
are invariant to rotation and translation (c).

Sensitivity Properties of Signatures:

Property 1. Sensitivity to Size and to Local Contrast

Signatures are sensitive to change in size (spatial scaling
by factor a) and change in local contrast (contrast change by
factor a) by the following relations:

φf(ax) = aφf (ax, at),

φaf(x) = φf (x, t/a).
(7)

This results from spectral TV properties [37]. This allows
differentiating objects by their distinct signatures (Fig. 4a).

Property 2. Sensitivity to Composition of Structures

Structures of comparable scales respond differently when
composed together (with spatial overlay), compared to their
individual responses. That is, in this case the non-linearity of
the TV transform applies, allowing for some signals f , g:

φf+g 6= φf + φg. (8)

Composited objects thus have distinct signatures (Fig. 4b).
An analytical solution (Appendix A, Proposition 1) and a
demonstration (Fig. 5) are given for the 1D staircase signal.
Note, that non-linearity is marginal for structures of very
different scales or for spatially distant ones.

Invariance Properties of Signatures:

Property 3. Invariance to Rotation, Translation and Flip

Signatures are rotation and translation invariant in Rn:

φf(Rx) = φf (Rx, t),

φf(x−a) = φf (x− a, t),
(9)

where R(x) is a rotation matrix, and a is a spatial shift (Fig.
4c). This also results from spectral TV properties [37].
Since TV is invariant to the coordinate system (being rotation-
ally invariant and sensitive only to derivatives), signatures are
also invariant to flip w.r.t. an arbitrary coordinate system:

φf(x)(x) = φf(−x)(−x). (10)

(a) f(x): staircase
signal

(b) fr(x) after
objects merge

(c) fr(x),
running time=50

(d) K-means
clustering using

φ(x, t)

(e) φ(x, t) of top
(red), middle (blue)

and background
(green) regions

(f)
Global spectrum

Sf (t)

Figure 5: Demonstration of Property 2 for the 1D staircase
signal (a). Spectral TV signatures, generated during TV flow
of the signal (b,c), are distinct for different regions (e). Thus,
signature clustering allows differentiating the regions (d).

Fig. 7 shows how these properties can be useful for finding
similar image textures, where a patch-based comparison fails.

Property 4. Invariance of Texture to Structure

Signatures of textures (patterns) are invariant to their un-
derlying structures for fine scales under very broad conditions
(precise conditions are given in Sec. V-C). Fig. 6 (top) shows
the invariance of signatures of objects with identical textures
to their different underlying global contrasts for fine scales.
A 1D proof (Sec. V-C, Theorem 1) and a 1D demonstration
(Fig. 9, top) are given.

Property 5. Invariance to Linear Illumination Change

Signatures are invariant to a linear change of illumination,
which holds up to a certain scale (precise conditions are
given in Sec. V-D). Fig. 6 (bottom) shows the invariance
of signatures of objects with identical textures and identical
global contrasts. A 1D proof (Sec. V-D, Theorem 2) and a 1D
demonstration (Fig. 9, bottom) are given.

B. Implications for General Images

Fig. 8 shows examples of signature similarity and dis-
tinctness for different modalities. Comparing the signatures
of different-size, same-color objects in Fig. 8a, signatures of
small white stars display stronger, earlier responses, distinct
from those of the larger white stripes (Fig. 8d). For thermal
and medical images (Fig. 8b), signatures of objects different in
size or contrast are distinct (Fig. 8c). Moreover, signatures of
highly-contrasted objects display stronger responses than those
of weakly-contrasted ones (Fig. 8e). Signature enhancement
(see Sec. VI-D) improves the distinctness of signatures of
different groups (Fig. 8f). This is useful since the salient
objects in these modalities are usually highly-contrasted.
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(a)
f(x)

(b) Left circle:
zoom-in

(c) Right circle:
zoom-in

(d) φ(x, t):
fine scales

(e) φ(x, t):
fine and coarse scales

Figure 6: 2D Demonstration of properties 4,5. Signatures of objects with identical textures (patterns) are invariant to their
different underlying structures - in this case, their different global contrasts - for fine scales (top). Signatures of objects with
identical textures and identical structures are identical - thanks to their invariance to linear illumination changes (bottom).

(a) A reference pixel (blue) and its 9
NN using spectral TV signatures

(b) Patches of reference pixel (left) and its 4 NN
using spectral TV signatures (c) Identical signatures of reference

pixel (blue) and its 4 NN

(d) A reference pixel (blue) and its 9
NN using patch intensity

(e) Patches of reference pixel (left) and its 4 NN
using patch intensity (f) Dissimilar patch intensity descriptors

of reference pixel (blue) and its 4 NN

Figure 7: 2D Demonstration of the invariance to rotation, translation and flip, and the invariance of textures to their underlying
structures. Using spectral TV signatures, the 9 nearest neighbors (NN) of a reference pixel (reference marked in blue) are
pixels of similar textures, but of different global contrasts, rotations, translations or flips (top). Conversely, the patch intensity
descriptor fails to find these texturally-similar pixels (bottom).

(a) Image with
repetitive structures

(b) Thermal image
with pixels marked

in color

(c) Distinct φ(x, t)
of pixels marked in

color in (b)

(d) Distinct φ(x, t)
of groups of objects

in (a)

(e) Non-enhanced
φ(x, t) of groups of

objects in (b)

(f) Enhanced φ(x, t)
of groups of objects
in (b) (Sec. VI-D)

Figure 8: Distinctness of signatures of groups of objects with
common features. For an image with repetitive structures (a),
groups of objects have distinct signatures (d). For a thermal
image, pixels of different objects (marked in color, b) have
distinct signatures (c), and so do groups of objects (e,f).

V. THEORETICAL ANALYSIS

This section presents theoretical analysis of some signature
properties in the 1D case for the theory-oriented reader. We
formulate a sufficient condition for local patterns to merge
first; and give sufficient conditions and proofs of the invariance
to linear illumination change and of texture to structure.
Appendix A shows an analytic solution of the separation of
composited regions for the 1D staircase signal.

A. Preliminaries

Our analysis below is based on the work of Steidl et al.
[38], which gives an analytic solution for the TV-flow in the
time continuous, spatially discrete 1D case. They show that
in a TV-flow evolution, each pixel belongs to a local constant
region (all pixels in the region are connected and have the
same value), which dictates its behavior. The region evolves
at a certain constant speed (inversely proportional to region
size), until a merging event occurs, that is, two neighboring
regions obtain the same value. Let f ∈ RN be a discrete 1D
input signal of size N pixels. Let u ∈ RN × [0,∞) be the
space-discrete realization of the TV-flow, defined by (2). We
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(a)
f(x): identical textures,

different structures

(b) φ(x, t < tmerge−in) of
left (red) and right (blue)

structures

(c)
Insignificant φ(x, t)
absolute differences

(d)
φ(x, t) of left (red) and
right (blue) structures

(e)
K-means clustering using

φ(x, t)

(f)
f(x): identical textures

and structures

(g) φ(x, t < tmerge−in) of
left (red) and right (blue)

structures

(h)
Insignificant φ(x, t)
absolute differences

(i)
φ(x, t) of left (red) and
right (blue) structures

(j)
K-means clustering using

φ(x, t)

Figure 9: Demonstration of Property 4 (top) and Property 5 (bottom) for 1D signals. A signal with identical textures, but different
underlying structures (a) has identical fine-scale signatures - up to tmerge−in, when local patterns merge (b,c). Signatures then
become distinct (d). A signal with underlying structures of identical global contrasts (f), not only has identical signatures for
t < tmerge−in (g), but also identical signatures up to tmerge−struct, when structures merge with background simultaneously
(h,i). Thus, signature clustering allows differentiating between structures (e), or structures from background (j).

(a) signal f , discussed in
Lemma 1 (b) signal f , discussed in Proposition 1, phase I (c) signal g, discussed in Proposition 1, phase II

(d) case of slowest
evolution of ui∈Ω,

see Lemma 1

(e) case of fastest evolution
of u0<i<N−1,
see Lemma 1

(f) signal g, discussed in Theorem 1 (g) signal g, discussed in Theorem 2

Figure 10: Signals discussed in Lemma 1 (a,d,e), Theorem 1 (f), Theorem 2 (g) and Proposition 1 (b,c).

denote by ui(t) the value of u at pixel i at time t.
Two main properties of this dynamic are:

1) There exists a finite number of merging events, 0 = t0 <
t1 < ... < tn−1 < tn (Proposition 4.1 (ii) in [38]).

2) Within the time intervals between merging events, t ∈
[tj , tj+1), all pixels ui, belonging to a constant region
{ui−l+1, ..., ui+r} of size wi,tj with relation µi,tj to its
neighboring regions, evolve linearly (4.1 (iii) in [38]):

ui(t) = ui(tj) + µi,tj

2(t− tj)
wi,tj

,

µi,tj =


0, if {ui−l, ..., ui+r+1} is strictly monotonic
1, if ui is minimal in {ui−l, ..., ui+r+1}
−1, if ui is maximal in {ui−l, ..., ui+r+1}.

(11)

B. Local Patterns Merge First

This section gives a 1D proof that regions of local patterns
merge first, and only then merge with their surroundings.
Let f : {0, ..., N −1} → R be as depicted in Fig. 10a, and let
Ω1 = {0, ..., i0−1},Ω = {i0, ..., i1},Ω2 = {i1+1, ..., N−1},
where Ω1,Ω2 are constant regions (no patterns outside Ω). We
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define: w1 , i0, l , i1 − i0 + 1, w2 , N − 1 − i1, and
assume, without loss of generality, that l < w2 < w1 and
f [i1 + 1] > f [i0− 1]. We define: m , min fi∈Ω is attained at
imin, M , max fi∈Ω is attained at imax, H , f [i1 + 1].
We also define the following two critical time points:
tmerge−in, the maximal merging time of Ω, and tmerge−out,
the minimal merging time of {i0, ..., N − 1}.

Lemma 1 (Local Patterns Merge First). Let f be as defined
above. If M−m

m−H ≤
w2

l , then tmerge−in < tmerge−out.

Proof. Relying on Section V-A, the TV flow dynamics of pixel
i are determined by wi, µi, regardless of ui(t = 0). The key
concept of our proof is that µi depends only on pixels at the
immediate edge of the region. Thus, pixel behavior is not
influenced by pixels ”beyond” the derivative / edge.
We first examine the slowest possible merging of Ω, that is, the
latest time of achieving equality of imin, imax. The slowest
speed of imin can be 0 (when near the boundary, case 1 of
(11)). But imax must always decrease at a speed of at least
2/(l−1), through a path of total length no more than (M−m).
In this case (Fig. 10d), tmerge−in = (M−m)·(l−1)/2. Thus,

tmerge−in < (M −m) · l/2. (12)

We now examine the fastest possible merging of Ω with Ω2.
In this case, imin is at the edge of Ω (Fig. 10e) with zero
speed. Thus the merging speed is bounded by the speed of
Ω2, 2/w2, through a path of length of at least (m−H). Thus,

tmerge−out ≥ (m−H) · w2/2. (13)

From the assumption of the Lemma we have:

M −m
m−H

≤ w2

l
⇒ (M −m) · l ≤ (m−H) · w2. (14)

Thus, combining (12), (13) and (14): tmerge−in < tmerge−out.

C. Invariance of Texture to Structure

This section gives precise conditions for the validity of
Property 4. Let f : {0, ..., N − 1} → R admit the condition
defined in Lemma 1. Let g : {0, ..., 2N − 1} → R be a
concatenation of f and a translated, value-shifted version of f
(see an example in Fig. 10f). We show that texture signatures
are identical for fine scales, regardless of their underlying
structures. Assuming some constants 0 < C1 < C2, we define:

g[i] =


f, 0 ≤ i < N

f + C1, N ≤ i < i0 +N, i1 +N + 1 ≤ i < 2N

f + C2, i0 +N ≤ i < i1 +N + 1.

We define the regions of identical texture (up to an additive
constant) as Ω = {i0, ..., i1}, Ω̃ = {i0 +N, ..., i1 +N}.

Theorem 1 (Invariance of Texture to Structure). Let g be as
defined above. Then there exists a time tmerge−in, such that:

φg(i ∈ Ω, t ≤ tmerge−in) = φg(i ∈ Ω̃, t ≤ tmerge−in). (15)

Proof. First, relying on Lemma 1: tmerge−in(gi∈Ω) <
tmerge−out(gi∈Ω), and tmerge−in(gi∈Ω̃) < tmerge−out(gi∈Ω̃).

Second, based on (11), the speed of u(t) at pixel i, ∂tui, is
invariant to translation and to change by an additive constant.
Since mi∈Ω = mi∈Ω̃, µi∈Ω = µi∈Ω̃, flow dynamics are
identical in Ω and in Ω̃ until the internal merge.
Therefore: tmerge−in , tmerge−in(gi∈Ω) = tmerge−in(gi∈Ω̃).
From the definition of φ (4) we deduce:

φg(i ∈ Ω, t ≤ tmerge−in) = φg(i ∈ Ω̃, t ≤ tmerge−in).

D. Invariance to Linear Illumination Change

This section gives precise conditions for the validity of
Property 5. We show that signatures of complete structures,
as well as their textures, are invariant to a linear change of
baseline, up to a scale related to the scale of the structure
(width and height), as seen in Fig. 9i. This is as opposed to
the fine scales discussed in Theorem 1, as seen in Fig. 9d.
Let f : {0, ..., N − 1} → R admit the condition defined in
Lemma 1, and l be as defined there. Let g : {0, ..., 2N−1} →
R be a concatenation of f and a translated f , with a linearly-
changing baseline, as depicted in Fig. 10g, as follows:

g[i] =

{
a · i+ b+ f [i], 0 ≤ i < N

a · i+ b+ f [i−N ], N ≤ i < 2N.

We define the structure regions as: Ω = {i0, ..., i1}, Ω̃ =
{i2, ..., i3}, and define: ∆ , max gi∈Ω − min gi∈Ω, w ,
i2 − i1-1, h , g[i2 − 1] − g[i1 + 1], such that: a = h/w.
For simplicity, we assume (though this can be relaxed) that
structures are of equal heights with respect to the linear slope:

g[i0]− g[i0 − 1] = g[i1]− g[i1 + 1] =

g[i2]− g[i2 − 1] = g[i3]− g[i3 + 1] , H.
(16)

We assume H is large enough and l small enough, so that
local patterns merge first, as in Lemma 1. We also require the
following condition:

h(w + 1)

2
>

(H + ∆) · l
l + 1

. (17)

Theorem 2 (Invariance to Linear Illumination Change). Let
g be as defined above. Then there exists a time tmerge−struct,
such that:

φg(i ∈ Ω, t ≤ tmerge−struct) = φg(i ∈ Ω̃, t ≤ tmerge−struct).
(18)

Proof. Following the same concept as in Theorem 1, patterns
in Ω, Ω̃ merge first and simultaneously. To determine the next
merging event, we explore the dynamics of structures Ω, Ω̃ vs.
those of the linear baseline. Using (16), we will now analyze
only the dynamics of the left structure and its neighborhood,
as both structures behave the same.
For two neighboring pixels i, j = i+ 1, which are of different
regions and of nonzero speed, the merge time according to
(11) is |g[i]−g[j]|

2/wi+2/wj
. Thus the slowest merging of the left

structure with the baseline occurs when ∂tui 6= 0 only for i =
{i0, ..., i1 + 1}, after its internal evolution made ui1 increase
by ∆. Then, an upper bound on the merging time of the left
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Figure 11: Image manipulation and image fusion using spectral TV local scale signatures: algorithm flowchart.

structure is: tmerge−struct ≤ tmerge(g{i1,i1+1}) = (H+∆)·l
2(l+1) .

We now calculate the merging time of the linear baseline,
tmerge−line. The preceding evolution is a series of merg-
ing events tk of regions hk, gradually growing with speeds
vk = 2/k by one pixel at a time, such that

∑w
k=1 hk = h/w.

Thus: tmerge−line =
∑w

k=1
hk

vk
= h(1+w)

4 .
Given (17), tmerge−struct < tmerge−line. Therefore, TV flow
dynamics are identical for Ω, Ω̃ until tmerge−struct. Relying
on (4), we deduce that:

φg(i ∈ Ω, t ≤ tmerge−struct) = φg(i ∈ Ω̃, t ≤ tmerge−struct).

VI. ALGORITHM AND APPLICATIONS

The properties of spectral TV signatures can allow grouping
together objects with shared features. To facilitate this, we
perform dimensionality reduction by clustering of signatures.
This allows to partition the image into a set of distinct groups
with common spectral TV responses, which can serve for
isolating and differentiating salient objects.

A. A Unified Framework
We present a generic unified framework with various appli-

cations for images of different modalities (Fig. 11, Algorithm
1). We first decompose the image into its TV elements, using
the TV-transform1 of (4), calculating up to the maximal scale
of relevant image structures, T . We use the gray-level version
of the input image (in this work, color information is not used).
We then perform application-dependent preprocessing on the
acquired signatures, denoted φf (x), generating more relevant
and enhanced descriptors, denoted Φf (x), to be used as the
feature vectors for clustering. A basic dimensionality reduction
is performed, using K-means clustering [39]. Last, application-
dependent postprocessing of clusters is applied when needed.

1See spectral TV code in http://guygilboa.eew.technion.ac.il/code/code1/

Spectral TV Feature Denoising: Since most image noise
appears in the first spectral TV bands, an optional denoising
step is inherited within the spectral TV scheme, simply by
omitting some of the first spectral TV bands.
Denoting the minimal preserved scale (determined by the ex-
pected noise variance) as td, and the maximal scale calculated
for the transform as T , we define denoising as:

Φf (x) = φf (x, [td, T ]). (19)

B. Synthetic Images: Object Differentiation

We first show how disk-type objects are well differentiated
in this framework. As we want to use simple unsupervised
K-means, we first perform a rough foreground / background
separation (as the background may contain several clusters).
This is done by exploiting the negativity of dominant peaks
of background signatures (for dark background). Figs. 3, 13
show clustering results of basic structures. Fig. 12 shows
how clustering using our method outperforms clustering us-
ing other well-known image decompositions and descrip-
tors [17], [18], [19], [16]. These examples illustrate the unique
advantages of the proposed approach. Signatures are very
similar for same-object pixels and very distinct compared to
pixels of other objects.

C. Application I: Image Manipulation

We extract a map of salient objects of desired sizes or
structures for image manipulation: enhancement, attenuation
or coloring of certain structures. We can either explore clusters
of manually predefined pixels, or choose interesting structures
after clustering. Preprocessing may include denoising (Eq. 19),
or selecting regions of interest using a map M(x):

Φf (x) = φf (x, t) ·M(x). (20)
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(a)
Synthetic

input image

(b) Different wavelet
descriptors of

same-object pixels

(c) Different PM
diffusion descriptors
of same-object pixels

(d) Different
Laplacian descriptors
of same-object pixels

(e) Different HoG
descriptors of

same-object pixels

(f) Similar spectral
TV signatures of

same-object pixels

(g)
Clustering using
patch intensity

(h) Clustering using
wavelets [17]

descriptors

(i) Clustering using
PM diffusion [18]

descriptors

(j) Clustering using
Laplacian [19]

descriptors

(k)
Clustering using

HoG [16] descriptors

(l) Our method:
clustering of spectral

TV signatures

Figure 12: Synthetic analysis and comparison of spectral TV signatures to other descriptors, based on wavelets [17], Perona-
Malik (PM) diffusion [18], Laplacian pyramid [19] and Histogram of oriented gradients (HoG) [16]. Clustering (bottom row)
succeeds only when relying on spectral TV signatures, since they are the only descriptors (top row), which guarantee similarity
for same-object pixels but distinctness for different-object pixels.

Data: Input image: natural with repetitive structures;
thermal; medical; or synthetic.

Result: Image manipulation, image fusion or object
differentiation.

Spectral TV transform
Preprocessing:

case synthetic image do
Foreground / background separation, Sec. VI-B

case repetitive image do
Spectral TV Denoising, Eq. 19 (optional)
Selecting regions of interest, Eq. 20 (optional)

case thermal or medical image do
Spectral TV Denoising, Eq. 19 (optional)
Signature enhancement, Eq. 21

Dimensionality reduction: K-means clustering
Postprocessing:

case repetitive image do
Matting or morphological operations, Sec. VI-C

(optional)
case thermal or medical image do

Matting, Sec. VI-D (optional - using residual,
Eq. 6)

Application:
case repetitive image do

Image manipulation
case thermal or medical image do

Image fusion, Appendix B
Algorithm 1: A unified framework for various modalities
and applications using spectral TV local scale signatures.

Postprocessing may require image matting [40] or morpholog-
ical operations of relevant clusters.

D. Application II: Image Fusion

We extract a saliency map from thermal or medical (MRI-
T2) images to be fused into a corresponding different-modality

In
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t
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C
lu

st
er
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g

Figure 13: Synthetic images: object differentiation results.

image of the same scene (visible or medical, respectively).
This relies on the high contrast of salient objects in these
modalities (hot objects, or tumors or abnormal organ struc-
tures, respectively). To improve clustering, preprocessing in-
cludes signature enhancement - ”stretching” each signature
according to its Lp norm (usually L1 norm) over scales:

Φf (x) = φ(x, t) · ||φ(x, t)||p[0,T ]. (21)

Signatures of salient objects ”stretch” more, thus promoting
their strength and sparsity (see Fig. 8e vs. Fig. 8f). Denoising
(19) is also optional. We cluster these enhanced, possibly
denoised signatures, Φf (x). Using more clusters allows cap-
turing smaller or narrower objects, e.g. people and lampposts.
Finally, our postprocessing includes image matting [40] to
generate the saliency map. The user chooses parameters
K1,K2, where the K1 strongest clusters (in the sense of
centroid intensity) form an initial foreground map; and the
K2 weakest clusters form an initial background map. Matting
then classifies all other pixels as foreground / background, and
the resulting foreground is the saliency map.
The relevance of highly contrasted but large regions is often
low, depending on the application. In addition, weak signatures
may nevertheless indicate relevant objects, which have not
responded yet within a limited running time, or objects near
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image boundaries. We can handle both issues by incorporating
large-scale image structures into the postprocessing matting
using the image residual fr(x) (6), requiring to select thresh-
olds for fr(x). This generates an alternative detailed map with
large or near-boundary objects, while avoiding long running
times (Figs. 22d vs. 22f). See Appendix B for novel fusion
visualization methods.

VII. EXPERIMENTAL RESULTS

We show experimental results for various image modalities
and applications, such as image fusion, image segmentation /
edge detection and size differentiation, achieving comparable
or superior results compared to other techniques2.

A. Image Manipulation

Fig. 14 demonstrates salient repetitive structure extraction.
A comprehensive comparison clearly shows how our method
outperforms other state-of-the-art methods. Our method allows
to extract fine salient structures in challenging images: leaf
veins with varying-illumination background (b), or thin stripes
of a game-board, of the same color as other objects (j). This
is thanks to the properties discussed earlier of invariance to
rotation, translation and linear illumination. Conversely, other
methods [10], [14], [12] fail to detect well such fine structures
(c,d,e,k,l,m). Other methods rely on less stable features, which
are sensitive to illumination changes (f,n) or to rotations [16]
(g,o). In the case of learning-based methods, features are
trained for semantic segmentation [24] (h,p).
Fig. 15 demonstrates how basic K-means clustering (with
K = 2) using spectral TV signatures (c) shows highly
meaningful clustering compared to the same procedure, based
on other well-known image decompositions or descriptors
(d,e,f) [17], [18], [19]. Fig. 15b shows an application of
signature-based stripe extraction for image manipulation.

The size sensitivity property (Property 1) allows to differen-
tiate objects of similar colors by size. Additional image mat-
ting or morphological operations may be used to reconstruct
the fine original boundaries from round-shaped clusters. Image
manipulation examples based on image segmentation / edge
detection or size differentiation are given in Figs. 2, 16.

B. Image Fusion

We give a comprehensive visual and quantitative compar-
ison for multiple state-of-the-art methods, using four estab-
lished metrics over multiple image datasets. First, we compare
the two variants of our method for nine thermal-grayscale im-
age pairs (Table I, Figs. 17 to 20, supplementary). Second, we
compare our feature injection method for four medical image
pairs (Table II, Fig. 21, supplementary). Third, we compare
our temperature gradient coloring method for two thermal-
RGB image pairs (Table IV, Figs. 2, 22, supplementary). We
also show that our method offers a statistically significant

2Some demo code will be available at:
https://etyhait.webgr.technion.ac.il/sample-page/spectral-total-variation-local-
scale-signatures-for-image-manipulation-and-fusion/,
http://guygilboa.eew.technion.ac.il/code/.

improvement over other fusion methods. All p-values of the
non-parametric Mann-Whitney U test [51] are smaller than
0.05 (Table III).
Our saliency extraction and fusion method presents improved
visual results. It can extract fine salient details (Figs. 17,
22), or salient features from a challenging, nearly piecewise
constant image (Fig. 20). It also allows extracting differently
detailed versions of saliency maps by incorporating large-scale
structures (Figs. 20, 22). Our method also outperforms a well
established generic saliency extraction method [44], applied
directly onto the thermal image (Fig. 17). Note that as opposed
to our work, previous thermal saliency extraction work is
usually specifically designed for human detection [52]. Our
fusion scheme also suggests two novel visualization methods,
feature injection and gradient coloring (Appendix B).
Our method also achieves superior or comparable quantitative
results in almost all cases using the established MI [53],
FMI [54] and Petrovic (Q

AB/F
P ) [55] metrics. The prominent

exception for this are the inferior results achieved using
the Piella measure [56]. Figs. 17 to 19, 21 to 22 visually
demonstrate how this metric often does not reflect the visual
advantage of our method: maintaining most of the information
from the detailed image, while sharply injecting or enhancing
the highly-contrasted details.
The drawbacks of the Piella measure have been pointed out
before, for example in [57], [54], [58], [59]. More specifi-
cally, Cvejic et al. [60] have pointed out the reliance of the
Piella measure on a problematic definition of image window
saliency, and the great influence of the window size on the
results. Moreover, Yang et al. [61] have pointed out that the
Piella measure does not differentiate regions with conflicting
information from ones with redundant information. Therefore,
methods that visually succeed in selecting the source of
information for fusion in these conflicting regions are actually
penalized by the measure.

VIII. CONCLUSION

We design an algorithm to isolate and differentiate objects of
different contrasts, sizes and structures, as well as multi-scaled
objects. We use the comprehensive scale and space information
generated by the spectral TV transform, referred to as spectral
TV local scale signatures. Given their high dimensionality and
redundancy, we reduce their dimensionality to partition an
image into meaningful groups. We prove some useful merits
of our local framework: sensitivity to size, local contrast and
composition of structures, as well as invariance to rotation,
translation, flip and linear illumination change. We also pro-
vide conditions for the invariance of texture to structure. This
enables to construct a unified generic framework applicable
for different image modalities and image processing tasks.

APPENDIX

A. Differentiating Composited Regions by Distinct Signatures

We give an analytic solution for the behavior of the 1D stair-
case signal to demonstrate Property 2. We show that within
each region, signatures of all pixels are identical and distinct
with respect to each other (thus can be easily clustered).
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Image Metric
Ours,

feature
injection

Ours,
gradient
coloring

GTF
[35]

Ratio of LP
Pyramid

[42]

Wavelets
[45], [46]

Complex
Wavelets

[47]

Curvelet
[49]

SVD
[48]

MST
[41]

Camp

MI[53]
Q

AB/F
P [55]
FMI [54]

QPiella [56]

6.8513
0.4947
0.5976

0.5041

5.5641
0.4986
0.5737

0.5524

2.0508
0.3761
0.4389

0.5100

1.4204
0.4156
0.4298

0.5903

1.6191
0.2847
0.4309

0.6196

1.5023
0.4245
0.4213

0.6139

1.4214
0.3739
0.3912

0.5942

1.5417
0.2939
0.3226

0.5994

1.6521
0.4884
0.4509

0.6481

Dune

MI[53]
Q

AB/F
P [55]
FMI [54]

QPiella [56]

6.5156
0.5057
0.6146

0.4988

6.4463
0.5061
0.6127

0.4997

1.3417
0.4288
0.5188

0.5408

1.3586
0.4235
0.4386

0.6702

1.4885
0.2983
0.4402

0.6886

1.3548
0.4037
0.4400

0.6821

1.2754
0.3457
0.4076

0.6687

1.4326
0.3381
0.3877

0.6844

1.5812
0.4669
0.4629

0.7015

Trees4917

MI[53]
Q

AB/F
P [55]
FMI [54]

QPiella [56]

6.3165
0.4944
0.5986

0.4783

6.2372
0.4927
0.5966

0.4777

1.4902
0.3578
0.4633

0.4669

1.4523
0.4280
0.4558

0.5729

1.7048
0.2548
0.4176

0.6374

1.5408
0.4043
0.4246

0.6382

1.4951
0.3504
0.3946

0.6321

1.6130
0.2859
0.3280

0.6172

1.5512
0.4524
0.4432

0.6374

Road

MI[53]
Q

AB/F
P [55]
FMI [54]

QPiella [56]

6.4267
0.5796
0.5808

0.6292

4.7090
0.5393
0.5495

0.6397

1.7227
0.4767
0.4717

0.6101

1.7523
0.4942
0.4266

0.6724

1.7085
0.3169
0.4484

0.6501

1.6805
0.5032
0.4329

0.6718

1.5956
0.4631
0.4045

0.6417

1.5961
0.2991
0.2981

0.6052

2.1023
0.5692
0.4668

0.7193

Smoke

MI[53]
Q

AB/F
P [55]
FMI [54]

QPiella [56]

8.2907
0.6411
0.5917

0.6245

6.0304
0.5682
0.5308

0.6112

3.3017
0.3634
0.3986

0.5222

2.6955
0.4890
0.4393

0.5917

3.3229
0.2542
0.4057

0.5788

2.8532
0.5263
0.4408

0.6082

2.5338
0.4755
0.4095

0.5576

3.1259
0.2492
0.2871

0.5388

4.5191
0.5999
0.4739

0.6589

T1

MI[53]
Q

AB/F
P [55]
FMI [54]

QPiella [56]

7.2481
0.6331
0.5803

0.7630

3.3823
0.3406
0.4378

0.5723

2.2064
0.3479
0.4242

0.4815

2.5584
0.5581
0.4409

0.7434

2.8301
0.3656
0.4774

0.7046

2.2855
0.5715
0.4549

0.7389

2.1993
0.5171
0.4223

0.7069

2.5539
0.3638
0.3325

0.6805

2.7973
0.6355
0.4866

0.7445

Trees4906

MI[53]
Q

AB/F
P [55]
FMI [54]

QPiella [56]

6.4928
0.4771
0.5972

0.4714

6.4088
0.4753
0.5949

0.4723

2.0650
0.3509
0.4658

0.4808

1.9717
0.4550
0.4660

0.6036

2.2998
0.2718
0.4268

0.6558

2.0662
0.4525
0.4442

0.6645

2.0061
0.3988
0.4136

0.6582

2.1789
0.2598
0.3019

0.6077

2.1328
0.4904
0.4584

0.6719

Steamboat

MI[53]
Q

AB/F
P [55]
FMI [54]

QPiella [56]

6.5162
0.4424
0.5708

0.3137

4.8791
0.3374
0.5302

0.3137

3.8905
0.2569
0.3849

0.4126

1.8089
0.4386
0.4388

0.5729

1.9545
0.2593
0.4031

0.5820

1.7626
0.4578
0.4239

0.5789

1.5745
0.4167
0.3952

0.5501

1.7520
0.3538
0.3472

0.5891

4.7079
0.5415
0.4762

0.6578

Kayak

MI[53]
Q

AB/F
P [55]
FMI [54]

QPiella [56]

6.9402
0.4568
0.5381

0.5209

4.2435
0.3731
0.4445

0.6007

2.8485
0.1556
0.3203

0.2698

2.2995
0.4983
0.4269

0.5912

4.2295
0.3244
0.4346

0.6235

2.5632
0.6344
0.4158

0.6692

2.0692
0.5476
0.3684

0.5534

3.4723
0.4702
0.3422

0.6603

2.1464
0.6821
0.4500

0.7121

Table I: Comprehensive quantitative evaluation of our fusion application. We compare two variants of our method to seven
state-of-the-art fusion methods over nine thermal-grayscale image pairs using four established fusion metrics. Our method
achieves superior or comparable results almost always (best result, second best result), except for the Piella measure which
we believe does not reflect the visual advantage of our method.
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(a)
Repetitive input
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Figure 14: Results and comparisons: salient structure extraction for repetitive images.

Image Metric
Ours,

feature
injection

GTF
[35]

Ratio of LP
Pyramid [42]

Wavelets
[45], [46]

Complex
Wavelets [47]

Curvelet
[49]

SVD
[48]

MST
[41]

Sarcoma

MI[53]
Q

AB/F
P [55]
FMI [54]

QPiella [56]

3.9429
0.5777
0.7969

0.7769

2.7053
0.5529
0.7816

0.4886

2.7470
0.4908
0.7423

0.8013

3.0010
0.4775
0.7462

0.3447

2.5546
0.5218
0.6395

0.3775

2.4985
0.4974
0.4796

0.3399

2.6539
0.4953
0.7215

0.8153

2.8515
0.5766
0.7231

0.6558

C.T,
T2-T1

MI[53]
Q

AB/F
P [55]
FMI [54]

QPiella [56]

4.6010
0.5262
0.7878

0.6362

2.6487
0.4575
0.7459

0.3019

3.0589
0.4461
0.7093

0.7014

3.1888
0.3645
0.6978

0.3045

2.7108
0.4833
0.5809

0.3253

2.6509
0.4530
0.4240

0.3000

2.7601
0.3992
0.6700

0.7125

3.1365
0.5207
0.6934

0.5590

C.T,
T2-CT

MI[53]
Q

AB/F
P [55]
FMI [54]

QPiella [56]

4.0012
0.4602
0.7584

0.6844

2.3475
0.2718
0.6972

0.2580

2.5217
0.3480
0.6837

0.6765

3.3257
0.3042
0.7026

0.3473

2.5459
0.4498
0.5148

0.3704

2.4296
0.4295
0.4050

0.3514

2.6383
0.3879
0.6600

0.7507

2.7544
0.5162
0.6696

0.5521

M.B.C

MI[53]
Q

AB/F
P [55]
FMI [54]

QPiella [56]

3.8685
0.5414
0.7977

0.7724

2.6531
0.3023
0.7174

0.4459

2.7142
0.4030
0.7322

0.7569

3.7074
0.3650
0.7540

0.3566

2.6783
0.5216
0.5383

0.4093

2.5997
0.5049
0.4399

0.3962

3.0234
0.4537
0.7034

0.8154

2.8625
0.5906
0.7125

0.6228

Table II: Comprehensive quantitative evaluation of our fusion application. We compare our feature injection method to seven
state-of-the-art fusion methods over four medical image pairs (C.T = Cerebral Toxoplasmosis, M.B.C = Metastatic Bronchogenic
Carcinoma) using four established fusion metrics. Our method achieves superior or comparable results almost always (best
result, second best result), except for the Piella measure which we believe does not reflect the visual advantage of our method.

Let f : {0, ..., N − 1} → R be as depicted in Fig. 10b, and
let 0 < i0 < i1 < i2 < i3 < N − 1. We denote signal regions
as Ω1 , {i1, ..., i2}, Ω2 , {i0, ..., i1 − 1} ∪ {i2 + 1, ..., i3},
Ω3 , {0, ..., i0 − 1} ∪ {i3 + 1, ..., N − 1}, and their sizes as
m1 , i2−i1 +1, m2 , i1−i0 +i3−i2, m3 , i0 +N−1−i3,
respectively. Let fi∈Ω1

> fi∈Ω2
> fi∈Ω3

. Without loss of
generality, we assume that m3 > m1.

Proposition 1 (Sensitivity to Composition of Structures). Let
f be as defined above. Then:

φf (i ∈ Ωk, t) = ϕk(t), k = 1, 2, 3, (22)

such that ϕk(t) 6= ϕl(t), ∀k 6= l, k, l ∈ {1, 2, 3}. Note: region
signatures are identical ∀i ∈ Ωk, even for the disjoint Ω2.

Proof. Relying on Section V-A, we analyze the TV flow of f .

1) Phase I: t ∈ [0, t1) (Fig. 10b): following (11):

u(i, t) =


u(i, 0) + 2t

m1
· (−1), i ∈ Ω1

u(i, 0) + 2t
m2
· 0, i ∈ Ω2

u(i, 0) + 2t
m3
· 1, i ∈ Ω3.

m3 > m1 → ut(i ∈ Ω3) < ut(i ∈ Ω1). Thus, at t1
regions Ω1, Ω2 merge to form a new region Ω1,2 of size
m1,2 = m1 +m2.

2) Phase II: t ∈ [t1, t2) (Fig. 10c): following (11):

u(i, t) =

{
u(i, t1) + 2t

m1,2
· (−1), i ∈ Ω1,2

u(i, t1) + 2t
m3
· 1, i ∈ Ω3.

Thus, regions Ω1,2, Ω3 merge at t2: u(i, t > t2) = C.
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GTF [35] Ratio of LP
Pyramid [42]

Wavelets
[45], [46]

Complex
Wavelets [47] Curvelet [49] SVD [48] MST [41] Spec TV domain

fusion [5]
4.1135 e-5 4.1135 e-5 4.1135 e-5 4.1135 e-5 4.1135 e-5 4.1135 e-5 4.1135 e-5 9.99 e-4

Table III: p-values of the Mann-Whitney U test / Wilcoxon rank-sum test [51] for thermal images using the MI metric [53].
All p-values are smaller than 0.05, indicating that our feature injection method offers a statistically significant improvement.
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Figure 15: Comparison of K-means clustering into two clus-
ters, using spectral TV signatures vs. other descriptors.

(a) Repetitive image (b) Image manipulation

Figure 16: Image manipulation using size differentiation.

Differentiating the TV flow of different regions twice in time:

utt(i, t) =


2( 1

m1
− 1

m1,2
)δ(t− t1) + 2

m1,2
δ(t− t2), i ∈ Ω1

2
m1,2

(
− δ(t− t1) + δ(t− t2)

)
, i ∈ Ω2

− 2
m3
δ(t− t2), i ∈ Ω3.

From (4) we obtain (for some A,B,C > 0):

φf (i, t) =


A · δ(t− t1) +B · δ(t− t2)), i ∈ Ω1

−B · δ(t− t1) +B · δ(t− t2)), i ∈ Ω2

−C · δ(t− t2), i ∈ Ω3.

Image Metric
Ours,

gradient
coloring

GTF
[35]

Wavelets
[45],
[46]

SVD
[48]

Street

MI[53]
Q

AB/F
P [55]

FMI [54]

QPiella [56]

7.0235
0.5291
0.5689

0.5529

2.3288
0.4054
0.4261

0.5503

2.1936
0.3104
0.4439

0.6068

1.8259
0.4053
0.3815

0.6310

Lawn

MI[53]
Q

AB/F
P [55]

FMI [54]

QPiella [56]

6.8447
0.4619
0.5492

0.4714

2.5813
0.4300
0.4199

0.5543

3.2628
0.4323
0.4754

0.6696

2.4684
0.4612
0.3428

0.6582

Table IV: Quantitative evaluation of our fusion application. We
compare our temperature gradient coloring method to three
state-of-the-art fusion methods over two thermal-RGB image
pairs using four established fusion metrics. Our method always
achieves superior results (best result, second best result),
except for the Piella measure which we believe does not reflect
the visual advantage of our method.

B. Fusion Visualization Methods
Human observers, unlike computer systems, may prefer

viewing salient information when fused into a corresponding
different-modality image. We suggest two fusion visualization
methods. We denote the saliency map as S(x), a corresponding
registered image as V (x), and the fused image as F (x).
We first suggest injecting salient features directly into the
corresponding image (e.g. Fig. 18d):

F (x) = max(V (x), S(x)).

This allows introducing information which only appears in
S(x) on top of V (x). However, the typically low quality
thermal information might overlap the more detailed visible
information; and salient white objects will not be visualized as
salient. To overcome this, we suggest the temperature gradient
coloring method (e.g. Figs. 18c, 21d, 22f). F (x) is a gray-
level or RGB replicate of V (x) ({RV (x), GV (x), BV (x)})),
enhanced in locations corresponding to S(x):

F (x) = V (x) · g(S(x)),

or F (x) = {RV (x) · g(S(x)), GV (x), BV (x)},
then normalized to avoid clipping. g(S) must be:

1) Positive: ∀x, g(S(x)) > 0.
2) Monotonically increasing: ∀x, ∂g(S(x))

∂S(x) > 0.
3) Null for non-salient objects: g(S(x) = 0) = 1.

Some useful examples are g(S) = 1 +S and g(S) = exp(S).
Advantages of this method are: avoiding overlapping detailed
information with low-quality one; visualizing the gradient of
temperatures (e.g., the hotter the object - the redder it appears);
and handling salient white objects. Conversely, details which
appear only in the saliency map appear weaker in the fusion.
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Figure 17: Visual demonstration and comparison for thermal / grayscale fusion (Road image).
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Figure 18: Visual demonstration and comparison for thermal / grayscale fusion (Camp image).
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Figure 19: Visual demonstration and comparison for thermal / grayscale fusion (Kayak image).
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Figure 20: Visual demonstration and comparison for thermal / grayscale fusion (Smoke image).
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Figure 21: Visual demonstration and comparison for MRI-T2/T1 fusion (Sarcoma image).

(a) Thermal input
image

(b) Optical input
image

(c) Our reduced
saliency map

(d) Ours, reduced
fusion

(e) Our detailed
saliency map

(f) Ours, detailed
fusion

(g) Wavelets [45],
[46]

Figure 22: Visual demonstration and comparison for thermal / RGB fusion (Lawn image).
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[29] S. Osher, A. Solé, and L. Vese, “Image decomposition and restoration
using total variation minimization and the h,” Multiscale Modeling &
Simulation, vol. 1, no. 3, pp. 349–370, 2003.

[30] G. Gilboa, N. Sochen, and Y. Y. Zeevi, “Estimation of optimal pde-based
denoising in the snr sense,” IEEE Transactions on Image Processing,
vol. 15, no. 8, pp. 2269–2280, 2006.

[31] J.-F. Aujol, G. Gilboa, T. Chan, and S. Osher, “Structure-texture image
decompositionmodeling, algorithms, and parameter selection,” Interna-
tional Journal of Computer Vision, vol. 67, no. 1, pp. 111–136, 2006.

[32] L. A. Vese and S. J. Osher, “Modeling textures with total variation
minimization and oscillating patterns in image processing,” Journal of
scientific computing, vol. 19, no. 1, pp. 553–572, 2003.

[33] G. Gilboa, N. Sochen, and Y. Y. Zeevi, “Variational denoising of partly
textured images by spatially varying constraints,” IEEE Transactions on
Image Processing, vol. 15, no. 8, pp. 2281–2289, 2006.

[34] M. Kumar and S. Dass, “A total variation-based algorithm for pixel-level
image fusion,” IEEE Transactions on Image Processing, vol. 18, no. 9,
pp. 2137–2143, 2009.

[35] Y. Ma, J. Chen, C. Chen, F. Fan, and J. Ma, “Infrared and visible image
fusion using total variation model,” Neurocomputing, vol. 202, pp. 12–
19, 2016.

[36] F. Andreu, C. Ballester, V. Caselles, J. Mazón et al., “Minimizing total
variation flow,” Differential and integral equations, vol. 14, no. 3, pp.
321–360, 2001.

[37] G. Gilboa, “A total variation spectral framework for scale and texture
analysis,” SIAM journal on Imaging Sciences, vol. 7, no. 4, pp. 1937–
1961, 2014.

[38] G. Steidl, J. Weickert, T. Brox, P. Mrázek, and M. Welk, “On the equiv-
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